SDK 5 versus SDK 4.5 and the explorer frame —what'’s this all
about?

Version 1.0 (Dec 2011), Dr. Christian Paetz, christian.paetz@gmail.com

All Z-Wave devices run a firmware that consists of two parts: There is a fixed
part delivered by Sigma designs that covers all network related functions and
there is a vendor - specific part, that the vendors define and implement
according to the Z-Wave specification.

The part provided by Sigma is called a System Development Kit (SDK) and has
different release numbers. Certain versions of this SDK introduced new
functions. These SDKs are always backward compatible but the new functions
are then available only for this SDK and subsequent SDK numbers.

The following SDKs were released:

- SDK 3.0x: First Generation of Z-Wave chip ZW0102

- SDK 3.20: introduces Static Update Controller (SUC) in 2003

- SDK 3.40: SUC ID Server (SIS) in 2005

- SDK 4.00: Second Generation of Z-Wave chip ZW0201 in 2005

- SDK4.20: Silent Acknowledge in 2006

- SDK 5.0x: Third Generation of Z-Wave chip ZW0301 in 2007

- SDK 4.5x: Explorer Frame plus Network Wide Inclusion in 2009
- SDK 6.0x: Fourth Generation of Z-Wave chip ZW0401 in 2010

All SDKs before 3.40 can be considered as obsolete and only very few products
are still in the market based on these SDKs.

All SDKs from 4.20 but not 4.5x and the SDK 5.x - typically all referred to as SDK
5 - share the same support for the basic Z-Wave network functions and
processes.

The SDKs 4.5x plus all SDKs from 6.x offer an important function called explorer
frame that greatly enhances the way the network is self reorganizing in case of
changes. All products based on these SDKs are 100 % backward compatible to
the older SDKs.

If the network consists of devices of SDK 5 but contains some devices of SDK 4.5x
it will still run on the principles of the SDK. If the network only consists of
devices with SDK 4.5x this network will self organize on the principles of this
SDK and use its enhanced function.

To understand the difference between SDK5 and SDK4.5x some basic principles
need to be understood.



Z-Wave uses a so-called source routing. This means that the sender of a message
puts the full route to be traveled into the message. The message will then exactly
use the route defined by the sender. This means that the sender needs to know
about the structure of the network and valid routes to its peers. This structure
information is usually referred to as routing table although it’s technically an
information about neighborhood relations between nodes in the network.

A controller can refresh its own routing table by starting a network healing
process that asks all known nodes in the network to determine their neighbors
and report them back to the controller.

Other sensors of data, routing slaves or battery wall controllers or remote
controls typically don’t have this capability but depend on a central instance in
the network providing them updated routing information on request. This
instance must be a static controller - always available - with the special function
of updating nodes on request. This function is called “Static Update Controller =
suc”.

A Z-Wave network can operate without SUC but in this case there may be
problems with outdated routes in other than the primary controller in the
network and in all other nodes that need routes in order to operate properly.
Therefore the Z-Wave network will always try to appoint a static controller to
the role of SUC to ensure a stable network communication.

SDK 4.5 introduces a function called Explorer Frame. The difference to normal
messages in the Z-Wave network is that this explorer frame does not have a
predefined route but its supposed to be forwarded by all nodes to all neighbors
so that is will eventually reach its desired destination is there is a valid routel.
The explorer frame can be therefore seen as a routing of last resort or a joker. It’s
causing some more traffic in the network but it will reach its destination
regardless of the quality of the routing information in the nodes of the network.

How to deal with failed routes

The difference of the three different network configurations is shown if a
message sending attempt fails due to changes in the network such as moved or
disappeared nodes that acted as routers before.

1. Network with SDK 5.x without any SUC in the network

The sender will receive a failure notification and can do nothing about it.
Such a network will only be stable if all nodes are in direct range or the
user makes sure that all routing tables - including those in routing slaves
- are updated all the time. Whenever there is a static controller in the
network that supports the SUC function it will be appointed as SUC

1 A pruning algorithm makes sure that the explorer frames do not get routed
forever saturating the network.



without further user interaction to avoid this version of the network.
2. Network with SDK 5.x with SUC in the network

The sender will realize that a route failed and will ask the SUC for an
update of the route. If the route to the SUC fails this node will try to find a
route nearby that can help him to communicate with the SUC for the
update desired. This function is done on the network level without any
user interaction. As a result of the communication with the SUC the node
will receive an update of its routing table. The SUC gets informed about a
change in the network and can update its own routing table

3. Network with SDK 4.5x and 6.x

The sender will realize that a route failed and will send the message as
explorer frame. The explorer frame will eventually reach its destination
and update the routing table automatically this way.

Its obvious that the explorer frame greatly enhances the stability of the network
while even eliminating the need for a SUC. However in order to use explorer
frames all other devices in a possible route from the sender to the receiver
including the receiver must support these frames as well.

Since devices with support for explorer frames - i.e. SDK 4.5x or SDK 6.x - are
only introduced recently there will be mixed networks with different SDKs for a
foreseeable time. As said before if there are not sufficient SDK 4.5x devices in a
network the network will still use the SDK 5.x ~way to deal with changed
networks and will therefore still depend on a SUC in the network.

However its not needed that 100 % of the nodes support explorer frame.

- The source node using explorer frame to find a new route needs to
support explorer frame.

- Since most of the communication takes place with a static IP gateway, the
IP gateway or the Z-Wave USB Stick used by a software must support
explorer frames.

- Its not required that all mains powered devices support explorer frames
but there should be enough devices with explorer frame support in order
to allow to find new routes. The nodes with explorer frame will then
become them in routers in the network, since they will volunteer as
routers when a explorer frame determines a new route.

- Battery powered devices do not route and can therefore not enhance the
stability of a network. However if they don’t support explorer frames they
will not be able to find new routes automatically and still depend on a SUC
to update routes.

The Z-Wave USB Stick dilemma



Static IP Gateways typically use a Z-Wave chip with a serial API to communicate
with the Z-Wave network. Unfortunately the current Generation 3 chip used in
most USB Sticks and Gateways does not provide enough memory to run a 4.5
Serial API firmware that supports SUC. Therefore most Gateway manufacturers
and USB Stick vendors decided to stay with SD K5.x support to be backward
compatible.

Z-Wave.Me offers a ZSTICK4 that support SDK 4.5 but does not provide SUC
functionality. This device can therefore only be used in a network with SDK 4.5x
devices or in case there is a second Static controller with SUC support included.

Devices with 4.5x support

At the moment (December2011) only the following certified devices support the
advanced SDK4.5x with explorer frames in Europe:

- All devices from FIBAR (Switch, Dimmer, Motor Control)

- All actuators from Z-Wave.Me (Switch, Dimmer, Motor Control)
- All products from BeNext, Renz GmbH, Vitrum and Fortrezz

- The ZSTICK4 from Z-Wave.Me

- The Wall controller/switch from TKB

- Everspring in wall devices (HAC, HAN)



